Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.03.474779

ABSTRACT

Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine {beta}-coronaviruses ({beta}-CoV). The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in {beta}-CoV replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-{beta}-CoV drugs.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.13.201509

ABSTRACT

With more than 51 million cases and 1.3 million deaths, and with the resulting social upheaval, the COVID-19 pandemic presents one of the greatest challenges ever to human society. It is thus vital to fully understand the biology of SARS-CoV-2, the causative agent of COVID-19. SARS-CoV-2 uses its spike glycoprotein to interact with the cell surface as a first step in the infection process. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, we now demonstrate that following engagement with the plasma membrane, SARS-CoV-2 undergoes rapid clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system, and importantly clathrin-heavy chain knockdown, which blocks clathrin-mediated endocytosis, reduces viral infectivity. This discovery reveals important new information about the basic biology of SARS-CoV-2 infectivity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL